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LAMINAR BOUNDARY LAYER ON A FLAT PLATE AT 

LOW PRANDTL NUMBER? 
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Abstract-Using the method of matched asymptotic expansions, we obtain the first four terms in the low 
Prandtl number expansion for the recovery temperature and heat transfer in the flat plate compressible 
boundary layer (assuming a viscosity proportional to temperature). It is found that, provided the series 
are properly Eulerized, the results so obtained are good even when PrandtI number approaches infinity. 

NOMENCLATURE 
defined as z (y - 1) Mi; 
error function defined as 

-X2 dx; 

0 
dimensionless velocity in s-direction; 
defined by equation (11) ; 
defined by equation (25a); 
defined as = f”2(~) ; 
Mach number ; 
defined as - p~/p~p,; 
recovery factor defined in (20) ; 
Reynolds analogy factor defined in 

(26); 
dimensionless temperature ; 
coordinates along the plate measured 
from leading edge and normal to the 
plate. 

Greek symbols 

Y, ratio of specific heats; 

i, outer variable defined as = O%I ; 

VI, Howarth-Dorodnitsyn variable de- 
fined as 
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Y 

(P~P,)~Y 

0 

P5 fluid viscosity ; 

P, fluid density ; 

0, Prandtl number. 

Subscripts 
‘;o, free steam ; 

:, 
adiabatic wall ; 
wall. 

Superscripts 
‘, “, I”, first, second and third derivative with 

respect to r. 

I. INTRODUCTION 

BOUNDARY layer problems with low Prandtl 
number are of interest in flow of liquid metals 
and plasma. As we shall show here, however, a 
study of the limiting case of small Prandtl 
number 0 is of value even if 0 is not very small. 
For air the Prandtl Number is 0.73 at normal 
temperature and pressure, but flight at high 
speeds and altitudes leads to high temperatures 
and low pressures at which the Prandtl number 
can become very small (see Fig. 1 after Thomas 

[II). 
The general problem of compressible laminar 

boundary layers has been studied extensively 
in the past [2], but in general it is found difficult 
to account for arbitrary fluid parameters and 
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Mach number. Except in some specific numerical 
calculations, accounts of which are given by 
several authors (notably Kuerti [3], Young [4] 
and Van Driest [5]), most of the results assume 
the viscosity of the fluid to be proportional to 
temperature. However, the viscosity-tempera- 
ture relation is better represented either by the 
simple power law p a T", where 0) is a constant 
usually between f and 1, or by the Sutherland 
law which involves two constants and so is 
somewhat more complicated. 

P = Pressure G- 

0 4 a 12 16 20 

Temperature, IOOO’K 

FIG. 1. Prandtl number for air, frozen mixture (after 
Thomas [l]). 

Morgan et al. [6] have analysed the flow 
of an incompressible fluid at low cr and presented 
results up to order CT for the rate of heat transfer 
(ignoring the dissipation), and the recovery 
factor. Adams [ 71 and Goddard and Acrivos [ 81 
have presented results up to order a*_ and a* 
respectively for the heat transfer (again the flow 
is incompressible and dissipation is ignored). 
Sparrow and Gregg [9, lo] have presented a 
summary of low a results. Stewartson [2] gives 
the results up to order a* for the recovery factor 
and Reynolds analogy factor for a compressible 
fluid with pp = constant. Edward and Tellep 
[ll] have analysed heat transfer with variable 
thermal properties to order a*. 

In the present work, an attempt is made to 
improve solutions systematically for a gas with 
o = 1 using the method of matched asymptotic 
expansions. Solutions for other values of w 

will be studied in a later report. In the method of 
matched asymptotic expansions, we generally 
study the inner and outer limits of the problem 
and try to match them in the overlap region. 
This enables us to construct the complete 
temperature profile and to obtain more accurate 
expressions for the recovery factor and the heat 
transfer at the wall. Only flows with no pressure 
gradient are considered in this work. 

2. BASIC EQUATIONS 

The boundary layer equations for steady 
compressible flow of a fluid past a flat plate can 
be written in the usual notation [2] as 

(Nf”)’ + ff” = 0 (1) 

+ fl-’ + CA'f"2 = 0 (2) 

where N = ~~i;~~~l~, c= (y - l)M$. 

The dependent variables f’ (proportional to 
the velocity) and T have been nondimen- 
sionalized with respect to free stream values. 
Dashes indicate differentiation with respect to 
the Howarth-Dorodnitsyn variable 9 defined by 

Y 

(P/P,) dy. 
0 

The boundary conditions for the velocity profile 
are 

f(0) = 0 = f’(O), f’(‘X!) = 1. (3a) 

For the temperature profile we can have either 
an insulated plate for which 

T'(0) = 0, T(x)= 1, (3b) 

or wall temperature prescribed as a constant 
value, say To ; then 

T(0) = T,, T(m) = 1. (3c) 

To study the problem systematically at low 
Prandtl number, we consider the analysis in 
two parts. In this report we deal with the case 
when the Prandtl number and the product of 
density and viscosity are constants. More 
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general variable property flows will be studied Since the Prandtl number is low, the thermal 
in a later report. conductivity is large, so there is a small momen- 

tum layer inside a huge thermal layer. Following 
3. ANALYSIS Lagerstrom [12] to solve (5) under boundary 

Under the assumptions stated above, the conditions (3b) or (3~) we proceed as follows. 
momentum equation (1) becomes explicitly 
independent of T. The problem reduces to one 
of solving the two equations 

3.1 Inner solution 

First taking the inner limit, which is defined 

f”’ + jy-” = 0 (4) to be (T + 0 with r] fixed, we write, 

T" + of-T' + Cof “’ = 0. (5) T(q, a) = 1 t(n)(q)~“‘2. 
n=O 

(8) 

The equation (4) under boundary conditions 
(3a) is the well known Blasius problem, whose 

Substituting this series (8) into equation (5) 

solution may be considqed known. Its solution 
and collecting various powers of a* we get 

near the surface for small q is t ,+I) = _ ft”“- 2) _ Cf”2d2n 

f(q) = aq2/2 ! - a’$/5 ! + lla3q8/8 ! 

- 375a49”/11! + o(p) (6) Here K(q) =f”2(r]) is proportional to the 

where a = 0.469600 ; and for large q is 
viscous dissipation, 6.ij is the Kronecker delta 
and 

f(rl)=rl-P++O $exp{-(~-~)2i2) [ 1 Let 

t(- 1) = 0 = $2’ (10) 

= r] - p +O(r/-y (7) f*(V) = B - rl +f(rl) (11) 

where fi = 1.21678, and we write O(q-“) to wheref*(q) = O(r]-“) as q --f co. 
denote an exponentially small term in the 
limitq-+a. Now with the help of (10) and (1 l), the solution 

to the first six equations in (9) can be written as 

t(O) = a,q + A, 

t(l) = a,tj + A, 

W) 

b3) = - a, Iv316 - h2/2 + d k/ - ~1) f*(n) +,I 

+ a3ll + A3 Wd) 
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+ a,[$/‘40 - Pr4/‘g + B2q3/6 + (q3/‘6 - Pq2/2) ! f*(rlJ drl, 
b 

+ a4rl + ‘44 

t(‘) = a, [q5/40 - /Q”,‘S + b2r3,‘6 + 

- @i6 - P/:/2) f*(ql)dn, 

We) 

+ a,q + A,. 113-l 

Here the a, and Ai are constants of integration 
to be determined by boundary conditions at 
the wall and by matching this inner solution 
with the outer solution. In writing down the 
solutions in the particular form shown in (12). 
it is necessary at some places to change the 
order of integration suitably (this being easily 
justified ). 

J 
and study the limit as CJ -+ 0 with [ fixed. From 
(7) for large q we have 

f”(V) = oh- “1. 

The equation (5) with the help of (7) and (13) 
reduces to the outer flow equation 

It is easily seen that the solution (12) becomes 
singular at large q and does not satisfy the 
boundary condition at infinity. This singularity 
is rather similar to the one encountered in im- 
proving Stokes’s solution in low Reynolds num- 
ber flow [ 121. The outer expansion of the inner 
solution (12) for large q is a complicated power 
series in q and 0 and is given in Appendix A.l. 

(14) 

3.2 Outer solution 
It is now clear that a different outer approxima- 

tion for large r] is needed. From an order of 
magnitude analysis we introduce the outer 
variable 

< = & (13) 

which is correct to all orders in CJ. i.e. the error 
here is exponentially small. This is so because 
the thermal layer is much thicker than the 
momentum layer and all that the momentum 
layer does far away is to displace the stream 
lines from their inviscid position by an amount 
8. The outer equations of all orders in CJ proceed 
from this simple equation which can be solved 
once and for all. If z = [ - a*fl equation (14) 
reduces to 

__-_+zdLO d2T 

dz2 dz ’ 
(15) 
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The solution to this equation which satisfies 
the boundary condition T(m) = 1 is 

T=B+(l-B)erf z 
( > J2 ’ 

(16) 

where 

erf(z) = 1 s JTI 
e-“dt 

is the well known error function, B = B(o) is a 
constant of integration independent of z but 

j, 

3.3 Results 
The various unknown constants in (12) and 

(17) will now be determined by the matching 
principle [ 131, 

Inner limit of outer = Outer limit of inner 
solution T(i --f 0) solution T(q + ~0). (18) 

3.3(a) Insulated plate. Here T’(0) = 0 and 
equations (12a)--(12f) give a, = a, = . . . = a5 
= 0. The matching principle (18) determines the 
Ai and Bi (after changing the order of integration 
in A, and A4) as 

I B, = 0. 

a function of (T : say 

B = 1 B,cT”‘~. 
n=o 

The inner expansion of the outer solution (16) 
as [ -+ 0 is 

T([ -+ 0) = 1 B,cT”‘~ 
m=O 

+ (2/n)+ 
c 

(- l)“(vl - P)2m+i g(2m+1),2 

m!(2m + 1) 2” 
m=O 

- (2/7c)’ 
cc 

(-l)“(?j - /?)2m+l 

m!(2m + 1)2” 
s=o m=o 

x B 
s 
#m+ 1 +S)/2 (17) 

The wall recovery factor is 

(19) 

2u-i - 1) 
r= 

C 
= 2 1 An&z. (20) 

n=l 

The integrals in (20) can be evaluated by various 
methods as described in Appendix A.2 to obtain 

r = 0.9255 a+ + 0.1951 c - 0.1661~~ 

+ 0.0236 g2 + O(a+). (21) 

In this result (21) for the recovery factor, 
the first term has been given by Stewartson [2] 
and the first two terms by Morgan et al. [6]. 

3.3(b) Heut transfer. Here the wall tempera- 
ture T(0) = To is prescribed and we are interested 
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in heat transfer. In order to satisfy the wall condition, equations (12a to 120 require 

A0 = To, A, = A, = . ..A. = 0. 

The matching principle (18) determines the Ui and B, as 

a, = 0 

B, = TO 

a, = (2/k)+ (1 - To) 

B, = P(2/‘7+(1 - To) 

B, = C 7 r,K(v,)dv, - 28’U - T,h’~ 
b 

(22) 

(23) 
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m m 

+ df*h) drlt - s s f*(M f*h) dq, drlz 
0 0 12 

- $(37r2 - 407~ + 96)/3z2 

12-7cm 

+ v2f*(v2) f*(n) drll dv2 + 

3 s 
0 0 0 0 

+ (37~~ - 80x + 480)fi5/120rt2 . 

The heat-transfer rate at the wall can be 
expressed as 

T’(O) = c u,cP. (24) 
n=O 

With the help of the recovery temperature T, 
as given by (20), eliminating various integrals 
which are multiples of C in (24), the heat- 
transfer rate may be written as 

where 
T’(0) = (T, - To) G(o) (25a) 

G(o) = (2cr/rc)3 - 2/?a/7r 
m 

+ (2/k)+ f*h)b + 'G B' c+ 1 
0 

+ ‘viy3] o2 + O(d) (25b) 

[the quantity G(a) is proportional to the local 
Nusselt number divided by the square root of 
the local Reynolds number]. 

In this series (25b) the first term has again 
been given by Stewartson [2]. If the viscous 
dissipation is ignored, i.e. T, = 1, then the first 
two terms in series (25b) have been given by 
Morgan et al. [6] and the first three terms by 
Goddard and Acrivos [8]*. The various in- 
tegrals in G(a) are evaluated in Appendix A.2 
to obtain 

G(a) = 0.7979 .f - 0.7746 c + 1.0321 o* 

- 1.3177 fJ2 + O(&). (25~) 

The Reynolds analogy factor is 

T’(O) G(e) 
’ = ~-f”(0) (T, - To) = of"0 

= 1.6990 .-+ - 1.6495 + 2.1978 .+ 

- 2.88600 + O(a+). (26) 

The uniformly valid solution to the tempera- 
ture profile, obtained by taking the union of 
inner and outer solutions, is 

* In the numerical result (25~) for C(o), the first two 
terms are the same as those of Goddard and Acrivos [8], 
but in their third term there is a numerical error. 
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+ C(7cno,‘2)3 QJdq, 
s 
0 

a 92 

+ 2 Wvl2) f(rl) dvl dv2 

s s 

((o/2)+ (q - jQ1. 

0 0 

- erf /3(0/2)+ 
I 

(27) 

The uniformly valid solution for the temperature profile when the wall is insulated is obtained by 
the substitution 7’,‘, = T, in (27). 
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4. DISCUSSION where 

The series (21) and (25~) obtained here for 
the recovery factor and heat transfer rate 
show good convergence for low c [especially 
(2 l)] , but as CJ increases the rate of convergence 
becomes poor. It is well known, however, that 
such series do contain much information, and 
very useful estimates of the sum of slowly 
convergent or even divergent series can often 
be obtained by the use of various transformations 

Y = [af/(l + af)] . 

This leads to values within 5 per cent of the 
known asymptotic results as CJ + co. Some 
further improvement (to within 3 per cent of the 
asymptotic result) is easily achieved by a slight 
change in the value of the parameter q (to 0.8 
from 1.0) as described in Appendix A.3. The 
Eulerized result (28) for the recovery factor is 
compared with those of various authors in 

x Pohlhoussn 

Stewartson 

I 
Narasimha and Vasantha 

r 

Present work 

I ‘Stewartson 
(c-0) 

FIG. 2. Comparison of present work with previous results for recovery factor. 

which accelerate the convergence. Several inter- 
esting examples of such transformations are 
given by Van Dyke [ 131, one of the most 
widely used being the process called Euleriza- 
tion (see also Meksyn [ 141). In the present work 
we have used an extension of the conventional 
Eulerization procedure, described by Hardy 
[ 151 and called by him the (E, q) process. 

The recovery factor series (21) is Eulerized 
in the Appendix A.3. The conventional Euleriza- 
tion (q = 1) gives 

cr-+ I = 0.9255 Y+ + 0.5036 Y* 

+ 0.2997 Y : + 0.0995 Y’p + 0( Y :” ) (28) 

Fig. 2. At CJ = 0.6 the present result (28) gives 
r = O-7745 compared to the exact value 0.77 [ 71, 
and the low CJ asymptotic results of Stewartson 
[2] underestimates by about 7 per cent and that 
of Morgan et al. [6] overestimates by about 
8 per cent. At 0 = 1, the present result (28) 
gives r = 1.0037 (the exact value is unity [7]). 
When 0 = 15, our result (28) gives 3.575 and is 
1 per cent above the exact value 3.54 [7] while 
the large Q asymptotic results of Stewartson [2] 
overestimates by about 34 per cent, Narasimha 
and Vasantha [ 191 underestimates by 4 per cent 
and that of Afzal [ 171 

r = 1.922 a* - 1.341 + 0.468 .-+ + . . (29) 
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underestimates by 2 per cent. It should be result 
noted that the present result (28) approaches 
those obtained by various workers [2, 61 as 

G(a) = 0.748 a+/( 1 

c -+ cc, while for large c the result (28) is close to of Sparrow [18] for low I 

+ 0.82 a+) 

cs based upon von 
the asymptotic result (29) and when c + CC the Karman-Pohlhausen method underestimates 
result (28) underestimates by less than 5 per cent. G(o) throughout the range, by 6 per cent as 

IOt I 

X Pohlhausen 

,Norasimha and Vasantha 

cc -0) 
. 

Present work 

FIG. 3. Comparison of present work with previous results for the heat transfer (the results of 
Goddard and Acrivos [8] are plotted after correcting the numerical error in their third term). 

The heat transfer series (25~) is also Eulerized 
in Appendix A.3 to give 

a-+ G = 0.7979 Y+ - 0.5086 Y-$ 

+0.1766Y;+0.0235YL’ +O(Y’:) (30) 

and leads to values within 3 per cent of the known 
asymptotic result for 0 -+ co. The Eulerized 
result (30) is compared in Fig. 3 with that of 
various workers. At ~7 = 0.03 the present result 
(30) gives G = 0.1194 (the exact result [lo]) 
and the low (T asymptotic result of Stewartson 
[2] overestimates by about 16 per cent, Morgan 
et al. [6] underestimates by 4 per cent and that 
of Goddard and Acrivos [8] (after correcting 
the numerical error in their third term) over- 
estimates by 1 per cent. At 0 = 1 our result gives 
G = 0.4688 (the exact value is 0.4696 [7]). The 

CJ + 0 and by 12 per cent at 0 = 1. It is interesting 
to note again that our result (30) approaches 
those obtained by various authors [2,6,8] as 
cs + 0, while for large CJ the result (30) is very 
close to the asymptotic result of Narasimha 
and Vasantha [19] and as 0 -+ CD the result 
(30) overestimates within 3 per cent. 

From these results it is clear how the study 
of the limiting case of small Prandtl number is of 
use even if 0 is not very small since our results 
can be used even for CJ + cx, provided a 
sufficiently large number of terms in the expan- 
sion is computed and the series is properly 
Eulerized. Reliance on only the leading term 
in the expansion seems justified only for 
0 < 0.1, and can be misleading especially in 
heat transfer calculations. 
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APPENDIX 

A.1 Asymptotic Expansion of Inner Solution for Large n 
The outer expansion of the inner solution (12a-f) for 

large q is obtained (after some manipulation) as 

T(n + cc) = A,, + aon + uf[A, + a,n] 

+ (r?i6)( -a2 - aoB2 + a0 7 f*(rll)dql + C $ K(rll)drll: 
0 

-aoBV+i8 + aov5i401 + &As + a3 ~~J*(v~)drl~ 
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A.2 Evaluation of Integrals 

The integrals in series (21), (25) are evaluated by various 

methods depending upon the nature of the integral as follows : 
(i) Method of inversion of variables. The following are the 

integrals which were evaluated in [2O] by this method: 

(a) 1 .f”‘(t~,) dni = 0.3692 (A.2.1) 

(b) 7 r/,f”*(n,)dn, = 0.3517 
6 

(A.2.3) 

Heref(q) satisfies the Blasius equation (4) whose solution 

for small r~ is given by (6) and for large PI by (7). The method 

of inversion of variables has been used by Meksyn [14] on 

many problems. To illustrate the procedure we consider 

only the last integral (d). 

By inversioi of variables we get, using (6). 

The first integral of the Blasius equation (4) is 

.f”(q) = u exp [-WI)] 

where F(q) = 1 f(t) dt. 

(A.25) 

Now with the help of (A.2.5). (A.2.6) the integral (A.2.4) 

may be written as 

23F; 
+ 891Ooo+... 

> 
dF, 

= +(ga4)+r($) I 
= 0~09065 

(ii) Numerical integration. The following integrals were 

evaluated by Simpson’s rule using Smith’s [2I] tabulation 

of the Blasius solution (and same step sizes as given by 

Smith) 
I 

(a) i,f*(t)dt = I.09131 

(b) i tf*(t) dt = 0.79699 

(cl [ f*(t) ,i f*,.x) d.u dt = 0.34373 

A.3 Eulerizutron 

To improve by use of the ‘(E, y) method’ [ 151 the con- 

vergence of a series 

s = 1 h”o”“+’ (A.3.1) 
n=O 

which is convergent for sufficiently small values of CJ. ae 

recast (A.3.1) in a new variable Y defined by 

fr” = Y.(l - yY), ‘, # 0. (A.321 

It is easily seen that the resulting new series is 

where 

For GL = I = t, this result (A.3.3) is due to Hardy [l5]. 

It is well-known that the success of the usual Euleriza- 

tion procedure (which puts q = 1 in the above series) 
rests on the fact that the function represented by the series 

(say in CT” = X) possesses the nearest (to origin) singularity 

in the complex X-plane at X = -1 [13]. From (A.3.2) it 

appears that the (E,q) method is an extension to allow for 

the presence of the nearest singularity at X = I,</ (by deti- 

nition of radius of convergence X, of a power series in the 

complex X-plane, y = l/X,). Thus if there are no other 

singularities the (E, q) method extends the radius of conver- 

gence to infinity. 

Further, it may be noted that it can be shown [15] that 

if a series is summable (E, q) then for every c/’ > y. it is also 

summable (E, 4’) to the same sum. Stated in other words, if 

the series for S is summable (E, 4) than for every 

4’ = 1ilXI. /XI < XC (A.3.4) 
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the power series is summable (E, q’) to the same sum. 

However, we hope that the rate of convergence should be 

best for 4 = l/X,. In practice where one usually calculates 

only the first few terms of a perturbation exp’ansion, it is 

in general difficult to estimate the exact value of the radius of 

convergence and hence of 4. To overcome this difficulty we 

can make a first guess on the circle of convergence and get (1 

from (A.3.4) approximately. The series with this q, in 
general, will not give the best convergence (although the 

sum of the series is independent ofq provided q 2 l/X,). Now 

varying the q in a neighbourhood of this value we can find 

by trial a q which gives the best convergence. 

Let us first improve the convergence of the heat transfer 

series (25~). The ratios of successive coefficients in series 

(25~) for G(a) are 
1~030,0~751,0~783. 

and it appears likely that these may approach unity, sug- 

gesting 4 r 1. Now to recast the series (25~) in a form which 

hopefully will also be suitable for large CT, we extract a factor 

u* and Euler& the resulting series for u-*C(u) to yield. 

u-*~ = 0.7979 ($)I - 0,5086(i$;i);l (A.3.5) 

+ 0.1766 ($;;) ‘+ 0.0235 ($;*)“: . 

As c -+ 5 the successive partial sums of the series are 

0.7979,0.2890,0.4656,0,489 I, 

and the last partial sum is within 3 per cent (compared to the 

known value 0.47899 obtained from the study of the opposite 

limit of high u). 

Now for the recovery factor series (21) the ratios of 

successive coefficients are 

4,444, 1.1746,7,038, 
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and as such it appears difficult to make a statement about 

the limit of sequence. However, the series (21) is more rapidly 

convergent than (25c), hence q = 1 will certainly work and 

the resulting series for u-jr is 

u-*r = 0.9255(j;;;-)i + 0.5036(&): 

+O~2997(i_:l;;:)i3+0~0995(l~~-)?.. (A.3.6) 

The successive partial sums of the series as u + x are 

0.9255. 1.4291, 1.7388, 1.8283. 

and the last partial sum is within 5 per cent of the known 

asymptotic result 1.922 as u + x. 

This new series (A.3.6) cannot be expected to be the most 

rapidly convergent as we have used presumably too large a 

value of q. To select a 4 which gives the best convergence for 

large u, we have Eulerized the series for e-3 for various 

values of q and the results are as follows 

0.5 1.1661 0.8803 0.0775 - 0.7491 
0.6 1.0973 0.7513 0.2108 -0.3575 
0.7 1.0423 0.6613 0.2684 -0.1449 
0.8 0.9970 0.5950 0.2923 -0.0217 
0.9 0.9586 0.5441 0.3000 0.0529 
1.0 0.9255 0.5036 0.2997 0.0995 
1.1 0.8966 0.4707 0.2953 0.1291 
1.2 0.8709 0.4433 0.2890 0.148 1 

The above results show that the best convergence is given by 
q = 0.8 and predicts u-jr within 3 per cent as u + co. 

COUCHE LIMITE LAMINAIRE SUR UNE PLAQUE PLANE POUR UN NOMBRE DE 
PRANDTL FAIBLE 

R&um&Utilisant la methode des developpements asymptotiques, on obtient les quatre premiers termes 
dans le developpement relatif au petit nombre de Prandtl pour la temperature de recuperation et le trans- 
fert de chaleur dans la couche limite compressible sur une plaque plane (en supposant une viscositt pro- 
portionnelle a la temperature). On trouve que, tant que les series sont proprement “Eultris&es”, les resultats 

obtenus sont bons meme lorsque le nombre de Prandtl approche l’intinitude. 

LAMINARE GRENZSCHICHT AN EINER EBENEN PLATTE BE1 KLEINEN 
PRANDTL-ZAHLEN 

Zusammenfassung-Mit der Methode der angepassten asymptotischen Entwicklung werden die ersten vier 
Terme im Falle kleiner Prandtl-Zahlen fiir die Rtickgewinn-Temperatur und den Warmestrom in der 
ebenen Platte bei kompressibler Grenzschichtstromung berechnet funter der Annahme, dass die Viskositlt 
proportional der Temperatur ist). Es wurde fesgestellt, dass die so gefundenen Ergebnisse such ftir Prandtl- 
Zahlen gegen Unendlich noch verwendet werden kiinnen, falls die Reihen den Euler’schen Bedingungen 

angepasst sind. 
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JIAMklHAPHbI%i IIOI’PAHkiqHbItl CJIOB HA nJlOCH0~ IIJIACTHHE 
HP&l MAJIbIX SHAYEHI/IHX WICJIA HPAHflTJIH 

AmoTaqHJI-c IIOMO~bIo MeTOga CpaWklBaeMbIX aC&lMIITOTMYeCKMX pa3JIOFKeHlfb IIOJIyYeHbI 

nepobIe qeTbIpe meHa fbpa3~0&1mic MantIM :lIIaqeHIxehf wcna npaHzTm mm TeimepaTypbI 

BOCCTaHOBJIeIIllfI a nepeHoca Tenna B ClKHMaeMOM IIOPpaHM'iHOM cnoe Ha 11n0cIF0s IIJIacTnHe 

(B IIpeJJIIOnOFKeHPiM, YTO DRRIiOCTb HaXOAMTCR B IIpOIIOpIWOHaJIbHOfi 3aBHCLIMOCTIl OT TeMIIe- 

PaTypbI). HaB;[eHo, 'IT0 IIOJIyYeHHbIe TaKHM 06pa30M pe3yJIbTaTbI XOpOIIILi AaWe, IEOI'AZI 

3HaYeHWe YBCJIa npaHJJTJIR CTpeMliTCR Ii 6eCI~OHeYHOCTl'I(IIpkl yCZIOBHK,eCJII1 pJIA IIpaBtlJIbHO 

ntinepmonaH). 


